Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 49(D1): D916-D923, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33270111

ABSTRACT

The GENCODE project annotates human and mouse genes and transcripts supported by experimental data with high accuracy, providing a foundational resource that supports genome biology and clinical genomics. GENCODE annotation processes make use of primary data and bioinformatic tools and analysis generated both within the consortium and externally to support the creation of transcript structures and the determination of their function. Here, we present improvements to our annotation infrastructure, bioinformatics tools, and analysis, and the advances they support in the annotation of the human and mouse genomes including: the completion of first pass manual annotation for the mouse reference genome; targeted improvements to the annotation of genes associated with SARS-CoV-2 infection; collaborative projects to achieve convergence across reference annotation databases for the annotation of human and mouse protein-coding genes; and the first GENCODE manually supervised automated annotation of lncRNAs. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Subject(s)
COVID-19/prevention & control , Computational Biology/methods , Databases, Genetic , Genomics/methods , Molecular Sequence Annotation/methods , SARS-CoV-2/genetics , Animals , COVID-19/epidemiology , COVID-19/virology , Epidemics , Humans , Internet , Mice , Pseudogenes/genetics , RNA, Long Noncoding/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Transcription, Genetic/genetics
2.
Nucleic Acids Res ; 47(D1): D745-D751, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30407521

ABSTRACT

The Ensembl project (https://www.ensembl.org) makes key genomic data sets available to the entire scientific community without restrictions. Ensembl seeks to be a fundamental resource driving scientific progress by creating, maintaining and updating reference genome annotation and comparative genomics resources. This year we describe our new and expanded gene, variant and comparative annotation capabilities, which led to a 50% increase in the number of vertebrate genomes we support. We have also doubled the number of available human variants and added regulatory regions for many mouse cell types and developmental stages. Our data sets and tools are available via the Ensembl website as well as a through a RESTful webservice, Perl application programming interface and as data files for download.


Subject(s)
Databases, Genetic , Genome/genetics , Genomics , Vertebrates/genetics , Animals , Computational Biology/trends , Humans , Mice , Molecular Sequence Annotation , Software
3.
Nucleic Acids Res ; 47(D1): D766-D773, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30357393

ABSTRACT

The accurate identification and description of the genes in the human and mouse genomes is a fundamental requirement for high quality analysis of data informing both genome biology and clinical genomics. Over the last 15 years, the GENCODE consortium has been producing reference quality gene annotations to provide this foundational resource. The GENCODE consortium includes both experimental and computational biology groups who work together to improve and extend the GENCODE gene annotation. Specifically, we generate primary data, create bioinformatics tools and provide analysis to support the work of expert manual gene annotators and automated gene annotation pipelines. In addition, manual and computational annotation workflows use any and all publicly available data and analysis, along with the research literature to identify and characterise gene loci to the highest standard. GENCODE gene annotations are accessible via the Ensembl and UCSC Genome Browsers, the Ensembl FTP site, Ensembl Biomart, Ensembl Perl and REST APIs as well as https://www.gencodegenes.org.


Subject(s)
Databases, Genetic , Genome, Human/genetics , Genomics , Pseudogenes/genetics , Animals , Computational Biology , Humans , Internet , Mice , Molecular Sequence Annotation , Software
4.
Cell Calcium ; 62: 60-70, 2017 03.
Article in English | MEDLINE | ID: mdl-28196740

ABSTRACT

Store-operated Ca2+ entry (SOCE), an important Ca2+ signaling pathway in non-excitable cells, regulates a variety of cellular functions. To study its physiological role, pharmacological tools, like 2-aminoethyl diphenylborinate (2-APB), are used to impact SOCE. 2-APB is one of the best characterized SOCE inhibitors. However, 2-APB also activates SOCE at lower concentrations, while it inhibits inositol 1,4,5-trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and other ion channels, like TRP channels. Because of this, 2-APB analogues that inhibit SOCE more potently and more selectively compared to 2-APB have been developed. The recently developed DPB162-AE is such a structural diphenylborinate isomer of 2-APB that selectively inhibits SOCE currents by blocking the functional coupling between STIM1 and Orai1. However, we observed an adverse effect of DPB162-AE on the ER Ca2+-store content at concentrations required for complete SOCE inhibition. DPB162-AE increased the cytosolic Ca2+ levels by reducing the ER Ca2+ store in cell lines as well as in primary cells. DPB162-AE did not affect SERCA activity, but provoked a Ca2+ leak from the ER, even after application of the SERCA inhibitor thapsigargin. IP3Rs partly contributed to the DPB162-AE-induced Ca2+ leak, since pharmacologically and genetically inhibiting IP3R function reduced, but not completely blocked, the effects of DPB162-AE on the ER store content. Our results indicate that, in some conditions, the SOCE inhibitor DPB162-AE can reduce the ER Ca2+-store content by inducing a Ca2+-leak pathway at concentrations needed for adequate SOCE inhibition.


Subject(s)
Boron Compounds/pharmacology , Calcium Signaling/drug effects , Calcium/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Acinar Cells/drug effects , Acinar Cells/metabolism , Animals , Humans , Male , Mice , Mice, Inbred C57BL , Pancreas/drug effects , Pancreas/metabolism , Tumor Cells, Cultured
5.
Curr Protoc Cytom ; 69: 12.34.1-12.34.16, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24984962

ABSTRACT

Autophagy is a membrane-trafficking pathway activated to deliver cytosolic material for degradation to lysosomes through a novel membrane compartment, the autophagosome. Fluorescence microscopy is the most common method used to visualize proteins inside cells, and it is widely used in the autophagy field. To distinguish it from the cellular background, the protein of interest (POI) is either fused with a genetically encoded fluorescent protein or stained with an antibody that is conjugated to an inorganic fluorescent compound. Genetic tagging of the POI allows its visualization in live cells, while immunostaining of the POI requires the fixation of cells and the permeabilization of cell membranes. Here we describe detailed protocols on how to visualize autophagy dynamics using fluorescence microscopy in live and fixed cells. We discuss the critical parameters of each technique, their advantages, and why the robustness is increased when they are used in tandem.


Subject(s)
Autophagy/physiology , Cell Membrane/metabolism , Biological Transport, Active/physiology , Cell Line , Cell Membrane/genetics , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Humans , Microscopy, Fluorescence/methods , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics
6.
J Cell Sci ; 126(Pt 22): 5224-38, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24013547

ABSTRACT

Induction of autophagy requires the ULK1 protein kinase complex and the Vps34 lipid kinase complex. PtdIns3P synthesised by Vps34 accumulates in omegasomes, membrane extensions of the ER within which some autophagosomes form. The ULK1 complex is thought to target autophagosomes independently of PtdIns3P, and its functional relationship to omegasomes is unclear. Here we show that the ULK1 complex colocalises with omegasomes in a PtdIns3P-dependent way. Live-cell imaging of Atg13 (a ULK1 complex component), omegasomes and LC3 establishes and annotates for the first time a complete sequence of steps leading to autophagosome formation, as follows. Upon starvation, the ULK1 complex forms puncta associated with the ER and sporadically with mitochondria. If PtdIns3P is available, these puncta become omegasomes. Subsequently, the ULK1 complex exits omegasomes and autophagosomes bud off. If PtdIns3P is unavailable, ULK1 puncta are greatly reduced in number and duration. Atg13 contains a region with affinity for acidic phospholipids, required for translocation to punctate structures and autophagy progression.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Autophagy/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Autophagy-Related Protein-1 Homolog , Autophagy-Related Proteins , Class III Phosphatidylinositol 3-Kinases/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Phagosomes/metabolism , Phosphatidylinositol Phosphates/chemistry , Phosphatidylinositol Phosphates/genetics , Phosphatidylinositol Phosphates/metabolism , Protein Binding , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Vacuoles/metabolism
7.
J Vis Exp ; (77)2013 Jul 27.
Article in English | MEDLINE | ID: mdl-23929131

ABSTRACT

Autophagy is a cellular response triggered by the lack of nutrients, especially the absence of amino acids. Autophagy is defined by the formation of double membrane structures, called autophagosomes, that sequester cytoplasm, long-lived proteins and protein aggregates, defective organelles, and even viruses or bacteria. Autophagosomes eventually fuse with lysosomes leading to bulk degradation of their content, with the produced nutrients being recycled back to the cytoplasm. Therefore, autophagy is crucial for cell homeostasis, and dysregulation of autophagy can lead to disease, most notably neurodegeneration, ageing and cancer. Autophagosome formation is a very elaborate process, for which cells have allocated a specific group of proteins, called the core autophagy machinery. The core autophagy machinery is functionally complemented by additional proteins involved in diverse cellular processes, e.g. in membrane trafficking, in mitochondrial and lysosomal biology. Coordination of these proteins for the formation and degradation of autophagosomes constitutes the highly dynamic and sophisticated response of autophagy. Live cell imaging allows one to follow the molecular contribution of each autophagy-related protein down to the level of a single autophagosome formation event and in real time, therefore this technique offers a high temporal and spatial resolution. Here we use a cell line stably expressing GFP-DFCP1, to establish a spatial and temporal context for our analysis. DFCP1 marks omegasomes, which are precursor structures leading to autophagosomes formation. A protein of interest (POI) can be marked with either a red or cyan fluorescent tag. Different organelles, like the ER, mitochondria and lysosomes, are all involved in different steps of autophagosome formation, and can be marked using a specific tracker dye. Time-lapse microscopy of autophagy in this experimental set up, allows information to be extracted about the fourth dimension, i.e. time. Hence we can follow the contribution of the POI to autophagy in space and time.


Subject(s)
Autophagy/physiology , Phagosomes/chemistry , Single-Cell Analysis/methods , Carrier Proteins/biosynthesis , Carrier Proteins/chemistry , Carrier Proteins/genetics , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , HEK293 Cells , Humans , Microscopy, Fluorescence/methods , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Transfection
8.
Proc Natl Acad Sci U S A ; 110(32): 13186-91, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23878235

ABSTRACT

Alcohol-related acute pancreatitis can be mediated by a combination of alcohol and fatty acids (fatty acid ethyl esters) and is initiated by a sustained elevation of the Ca(2+) concentration inside pancreatic acinar cells ([Ca(2+)]i), due to excessive release of Ca(2+) stored inside the cells followed by Ca(2+) entry from the interstitial fluid. The sustained [Ca(2+)]i elevation activates intracellular digestive proenzymes resulting in necrosis and inflammation. We tested the hypothesis that pharmacological blockade of store-operated or Ca(2+) release-activated Ca(2+) channels (CRAC) would prevent sustained elevation of [Ca(2+)]i and therefore protease activation and necrosis. In isolated mouse pancreatic acinar cells, CRAC channels were activated by blocking Ca(2+) ATPase pumps in the endoplasmic reticulum with thapsigargin in the absence of external Ca(2+). Ca(2+) entry then occurred upon admission of Ca(2+) to the extracellular solution. The CRAC channel blocker developed by GlaxoSmithKline, GSK-7975A, inhibited store-operated Ca(2+) entry in a concentration-dependent manner within the range of 1 to 50 µM (IC50 = 3.4 µM), but had little or no effect on the physiological Ca(2+) spiking evoked by acetylcholine or cholecystokinin. Palmitoleic acid ethyl ester (100 µM), an important mediator of alcohol-related pancreatitis, evoked a sustained elevation of [Ca(2+)]i, which was markedly reduced by CRAC blockade. Importantly, the palmitoleic acid ethyl ester-induced trypsin and protease activity as well as necrosis were almost abolished by blocking CRAC channels. There is currently no specific treatment of pancreatitis, but our data show that pharmacological CRAC blockade is highly effective against toxic [Ca(2+)]i elevation, necrosis, and trypsin/protease activity and therefore has potential to effectively treat pancreatitis.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Calcium/metabolism , Ion Channel Gating/drug effects , Pancreatitis, Alcoholic/drug therapy , Acetylcholine/pharmacology , Acinar Cells/cytology , Acinar Cells/drug effects , Acinar Cells/metabolism , Animals , Barium/metabolism , Benzamides/pharmacology , Calcium Signaling/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Fatty Acids, Monounsaturated/pharmacology , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Ion Transport/drug effects , Membrane Potentials/drug effects , Mice , ORAI1 Protein , ORAI2 Protein , Pancreas/cytology , Pancreatitis, Alcoholic/metabolism , Patch-Clamp Techniques , Pyrazoles/pharmacology , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...